# Building Environmental Markets for a Clean Energy Future

Jennifer Layke
World Resources Institute

9th National Green Power Marketing Conference Albany, NY October 5, 2004

#### World Resources Institute

WRI is an environmental think tank that transforms ideas into action to protect the planet and improve people's lives



#### Emissions markets and renewables

- Why is including renewable energy in emissions trading important for society?
- What are the policy precedents to date?
- What are the barriers?
- Recommendations

# Climate change is one of the key challenges of the 21st century



Source: "Climate Change: State of Knowledge Report," Office of Science and Technology Policy, Executive Office of the President, 1997

## ...and the largest source of corporate GHG emissions in the US

### **US** industrial sector **GHG** emissions (2002)

Percent, 100%= 1,987.2 Tg CO<sub>2</sub>e\*

**US** commercial sector **GHG** emissions (2002)

Percent, 100%= 970.6 Tg CO<sub>2</sub>e\*





Source: US EPA, Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2002 (2004), Table ES-6. Does not include sinks.



<sup>\*</sup> Tg CO<sub>2</sub>e = Teragrams of carbon dioxide equivalents

# Switching to green power is a strategy for reducing corporate GHG emissions

**Energy efficiency** 

**Green power** 

**Process improvements** 

**Carbon sequestration** 



# Major types of policies for supporting renewable energy

Production tax credits

Renewable portfolio standards

Emissions markets



#### Possible value of allowances

|         | Allowance            | \$/MWh |  |  |
|---------|----------------------|--------|--|--|
| $SO_2$  | Value<br>\$1,000/ton | \$1.05 |  |  |
| $NO_x$  | \$1,200/ton          | \$0.63 |  |  |
| Mercury | \$35,000/lb          | \$0.16 |  |  |
| $CO_2$  | \$5/ton              | \$2.10 |  |  |

Source: Joel Bluestein, Energy and Environmental Analysis, Inc.



#### Emissions markets and renewables

- Why is including renewable energy in emissions trading important for society?
- What are the policy precedents to date?
- What are the barriers?
- Recommendations

6 states with RE/EE set-asides in NOx SIP Call



| State | % of   | NOx   |
|-------|--------|-------|
|       | 2003   | tons  |
|       | Budget |       |
| IN    | 2%     | 1,098 |
| MA    | 3%     | 436   |
| MD    | 5%     | 643   |
| NJ    | 5%     | 410   |
| NY    | 3%     | 1,241 |
| ОН    | 1%     | 495   |
|       |        |       |



#### Regional Greenhouse Gas Initiative

An Initiative of the Northeast & Mid-Atlantic States of the U.S.

#### Goal

- Regional CO<sub>2</sub> Cap-and-Trade Program
- CO<sub>2</sub> Emissions from Power Plants
- April 2005 model rule for states to adopt
- Demonstrate success



### Regional Greenhouse Gas Initiative An Initiative of the Northeast & Mid-Atlantic States of the U.S.

#### Fall/Winter Activities

- Determine Cap Size and market design
- Determine State Budgets and Allocation
- State-by-State Implementation

#### **Future Activities**

- Add States to Emissions Market
- Add Offset Categories to Program Over Time
- Possible expansion: other sources and sectors

#### Emissions markets and renewables

- Why is including renewable energy in emissions trading important for society?
- What are the policy precedents to date?
- What are the barriers?
- Recommendations

### Barrier #1: Economic theory

- "When electricity prices rise as a result of cap & trade programs, renewables will be built"
  - Not true in NOx or SO<sub>2</sub> programs
  - Society unlikely to accept the rise in electricity prices required to achieve price parity today
  - Distributed locations, transmission issues, small scale projects mean existing infrastructure planning often overlooks renewable projects

# Barrier #2: renewables do not emit and therefore do not require allowances

- Most cap & trade programs issue allowances on grandfathered basis – creating a valuable asset for emitters
- Emitters can then sell these allowances if they have reduction opportunities – making them MORE competitive in the short term
- Renewables excluded from economic benefits by being emissions free
- Output-based allowance allocations overcome this issue: but nuclear and large hydro benefit

## Barrier #3: Renewable energy already has its policies - RPS & PTCs

- But conventional generation has its policies too!
- Overlooks the need for rapid deployment of RE technologies needed to halt GHG emissions growth – we need it all, we need it now
- Private sector can contribute to deployment of green power technologies – if there is a business case
- Without an ability to legally claim CO<sub>2</sub> reductions, corporate green power markets are limited.

### Barrier #4: no agreed upon calculations for the emissions value of renewable projects

|              | Geographic scale |            | Type of emissions |         | Temporal scale |        |       |
|--------------|------------------|------------|-------------------|---------|----------------|--------|-------|
| REC provider | State            | Power pool | Nation            | Average | Marginal       | Annual | Other |
| Α            | X                |            |                   | X       |                | X      |       |
| В            |                  | X          |                   |         | X              |        | X     |
| С            |                  | X          |                   | X       |                | X      |       |
| D            |                  | X          |                   |         | X              |        | X     |
| E            | X                | X          |                   | X       | X              | X      | X     |
| F            | X                |            |                   | X       |                | X      |       |
| G            |                  |            | X                 | X       |                | X      |       |
| Н            | X                |            | X                 | X       |                | Χ      |       |
| 1            | X                |            |                   | X       |                | X      |       |
| i            |                  |            |                   |         |                | i      |       |

### Methodologies lead to quite varying results – results from WRI's 2003 RECs purchase:

lbs/MWh



#### Emissions markets and renewables

- Why is including renewable energy in emissions trading important for society?
- What are the policy precedents to date?
- What are the barriers?
- Recommendations

#### Greenhouse Gas Protocol

- Common standard
  - Widely accepted international GHG accounting and reporting standards and tools for business
- Policy penetration:
  - EU and UK Emission Trading Schemes
  - Chicago Climate Exchange
  - California Climate Action Registry
  - NE Regional Greenhouse Gas Registry (development)
- Electricity sector: avoided emissions for RE to be discussed late 2004-2005

#### Recommendations

- Output-based system would be good outcome if renewables included
- If not output-based, use set-aside allowance allocation for RE/EE for in-region renewables
  - Start with 15% set aside granted on output basis
  - Require allowances be retired to make climate change claims
  - Calculate emissions value based on agreed upon protocol like WRI/WBCSD GHG Protocol
- If additional flexibility needed, have stringent offsets program for out-of-system generators

